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Abstract. The sound velocity,v, and the sound attenuation coefficient,α, of fluid mercury have
been measured at 20 MHz in the temperature and pressure range up to 1600◦C and 200 MPa.
To obtain the precise sound attenuation data under high temperature and pressure, we have
derived the formula for estimatingα by taking into account the sound absorption in the buffer
rods and the acoustic impedance mismatches between the buffer rods and the sample Hg. The
measurements have been carried out with four different sample lengths, and the agreements among
these measurements are fairly good in the common density range. Beside the critical attenuation of
sound propagation, we have observed the secondary maximum in the density dependence ofα at
a density near 9 g cm−3, where the metal–nonmetal (M–NM) transition occurs. In contrast to the
critical attenuation, the height of the secondary maximum is almost independent of temperature.
Assuming a Debye-type relaxation for the frequency-dependent adiabatic compressibility, we have
estimated the relaxation time from the anomalous attenuation. We conclude that in expanded liquid
Hg slow dynamics is generated by the sound pressure in the M–NM transition range.

1. Introduction

Since the liquid–gas critical point of mercury is located at relatively low temperature
(= 1478◦C) and pressure (= 167 MPa), various physical properties have been investigated
experimentally in a wide density range including the supercritical conditions. The studies on
the electronic properties such as the optical properties [1–4], transport properties [5–8] and
magnetic properties [9, 10] have revealed that a metal–nonmetal (M–NM) transition occurs
at densities 8 to 9 g cm−3, which is appreciably larger than the critical density (5.8 g cm−3).
These experimental studies have stimulated many theoretical works. Mattheiss and Warren
[11] performed a band structure calculation for several hypothetical forms of crystalline Hg
with fixed nearest neighbour distance to model the density variation of the density of states at the
Fermi energy,EF , in expanded fluid Hg. When the density decreases, the calculated s-electron
component of the density of states atEF vanishes at a considerably smaller density than the
Knight shift [10]. Then, they had to elongate the nearest neighbour distance by 4% to reproduce
the experimental results. On the other hand, Franz [12] proposed that the correct density for
the M–NM transition can be theoretically predicted by taking fluctuations in the coordination
number into account. Kresse and Hafner [13] calculated the radial distribution functions and
the density of states for expanded liquid Hg by means ofab initio computer simulations, and
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reproduced the pair distribution functions experimentally obtained by Tamura and Hosokawa
[14] and the density variation of the optical gap [3]. As expected from the experimental data
[1–10] (see also figure 8), it has been concluded that the M–NM transition in liquid Hg is
mainly due to the lack of overlapping between the 6s and 6p bands.

An issue of considerable interest is that the M–NM transitions in the liquid state are, in most
cases, not purely electronic transitions but are accompanied by changes in the thermodynamic
and structural properties [15]. For liquid Hg an anomalous density variation of the equation of
state has been observed in the M–NM transition range [8]. In addition, the density variation
of the sound velocity shows an inflection from a metallic branch to a nonmetallic one. This
phenomenon was first observed by Suzukiet al [16], and confirmed by subsequent works
[17–19]. Furthermore, the x-ray diffraction study by Tamura and Hosokawa [20] implies that
the nearest neighbour distance is elongated by about 1% when the density decreases in the M–
NM transition range. Theoretically Munejiriet al [21] have deduced effective pair-potentials
from the experimental data by Tamura and Hosokawa [22] by means of the inverse problem
and used them to reproduce the density dependence of the sound velocity.

All the studies mentioned above are mainly aimed at investigating the static properties of
liquid Hg. Since the most characteristic feature of the liquid state, compared with the solid
state, is the time evolution of the atomic arrangement, it would be very interesting to study
dynamic aspects of the M–NM transition. For this purpose the measurement of the sound
attenuation may be promising. Some years ago, we reported preliminary results of the sound
attenuation for expanded liquid Hg [18]. We found that the attenuation becomes large at
relatively high densities compared with the density variation for simple liquids such as Ar. We
assigned the anomaly to the increase of the bulk viscosity and speculated that in the M–NM
transition range it may take some relaxation time for the metallic domain, which is generated
by the local compression, to be restored to a semiconducting domain. Kozhevnikovet al [23]
also reported the extinction of the sound wave for fluid Hg.

Recently we have measured the sound velocity and attenuation of expanded liquid Hg in
a wider temperature and pressure range [24] and obtained more extensive and more accurate
data, from which we can draw a conclusion that both the sound velocity and the attenuation
exhibit anomalous behaviours in the M–NM transition range. The major purpose of this paper
is to present the new data on the sound attenuation of liquid Hg over a wide density range and
to discuss a dynamic aspect of the M–NM transition for the first time.

The remainder of this paper is divided as follows. In section 2 we describe the experimental
apparatus for the acoustic measurements and explain how to deduce the precise attenuation
coefficient of liquid Hg under the high temperature and pressure conditions. Since the sound
velocity data are necessary for deducing the attenuation coefficient, we present first the results
of sound velocity and then the attenuation in section 3. Analysing the density dependence
of the attenuation, we demonstrate that there appears a secondary maximum in the M–NM
transition range. In section 4, assuming a Debye-type relaxation for the frequency-dependent
adiabatic compressibility, we try to estimate the relaxation time corresponding to the anomalous
attenuation due to the M–NM transition, and a possible model for the origin of the relaxation
is discussed. Although we have also observed significant attenuation in the liquid–gas critical
region, a detailed analysis of the critical attenuation will be described elsewhere [25]. Finally
the summary is given in section 5.

2. Experimental procedure

The experimental apparatus for the ultrasonic measurements is shown in figure 1. Single
crystalline sapphire rods 8 mm in diameter were used as buffer rods for transmitting the
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Figure 1. The experimental apparatus for measuring the sound velocity and attenuation.

ultrasonic waves. Two sapphire rods, A and B, were inserted into a single crystalline sapphire
tube with the inner diameter of 8 mm and the outer diameter of 10 mm. The axial length of both
sapphire rods was 89 mm. A gap between the two rods was the sample part and the sample
lengthslS were 0.30 mm, 0.98 mm, 1.90 mm and 7.00 mm. Hereafter we refer to these sample
thicknesses as 0.3 mm, 1 mm, 2 mm and 7 mm, respectively, for brevity. A sample reservoir
made of a stainless steel bellows was located at one cold end of the cell, and the Hg sample was
introduced from the reservoir into the sample part through a clearance between the sapphire
tube and the sapphire rod A. The sample cell was tightly sealed by glaze and viton O-rings, and
the bellows served to equilibrate the pressure in the cell with the applied one. The temperature
of the sample part was raised by two independently controlled heaters surrounding the central
part of the cell, and monitored by two W–5% Re:W–26% Re thermocouples. The temperature
was calibrated by using a saturated vapour pressure curve [26]. The cell assembly together with
the two heaters were set in a steel high pressure vessel which was pressurized with argon gas.
The inner and outer diameters of the high pressure vessel were 60 and 180 mm, respectively.
The pressure was measured by a Heise gauge. The experimental errors in temperature and
pressure were±3 ◦C and±0.5 MPa, respectively.

The sound velocity,v, was measured by an ultrasonic pulse transmission/echo method
[16, 18]. X-cut quartz or Z-cut Pb(Zr·Ti)O3 transducers with the resonance frequency of
20 MHz were bonded to the cold ends of sapphire rods. The time required for an ultrasonic
pulse to traverse from one transducer to the other,τAB , and the time required for an echo to
return from the interface between the rod A (or B) and the sample,τAA(orτBB), were measured.
All the signals were accumulated 100 times and recorded with a digital oscilloscope. The
difference betweenτAB and (τAA + τBB)/2 gives the time required for the pulse to traverse the
sample. Thenv can be deduced from

v = lS/{τAB − (τAA + τBB)/2}. (1)

The error of the sound velocity,v, was less than 3%.
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The sound attenuation coefficientα can be deduced from

α = − ln TS/lS (2)

whereTS is the transmission rate through the sample. In contrast to the ambient conditions,
whereTS can be measured with varying sample thicknesslS , it is difficult to changelS in situ
under high temperature and pressure. Hence, we have estimated the transmission rate as
follows.

Figure 2. The schematic diagram of the experimental apparatus. Definitions of the transmissivity,
tIJ , and the reflectivity,rIJ , at the interfaces are also shown.TS is the transmission rate through
the sample with a thickness oflS .

Figure 3. The sound velocity,v, along several experimental paths is shown as a function of
temperature. Several different symbols are used depending on the pressure. The sample thickness
was 1 mm.

When the incident pulse is applied to the transducer A, the sound pulse is transmitted
through the rod A, sample and rod B successively, and reaches the transducer B (see figure 2).
Here the voltage generated at the transducer B in this way is denoted byVAB . Since fairly long
buffer rods are necessary for the measurements at high temperatures, the sound attenuation
due to the sapphire rods is no longer negligible. Therefore, we measured not onlyVAB but
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Figure 4. The sound velocity,v, is shown as function of density. Several different symbols are
used depending on the pressure and the sample lengths. The meaning of these symbols is shown
in the figure. The results for the sample length of 7 mm were measured by Okadaet al [19].

also the voltages,VAA andVBB which are generated at the transducers A and B, respectively,
by the echo signals reflected from the interface between the Hg sample and the buffer rods.
These quantities may be expressed as follows:

VAB = V0αATAtASTStSBTBβB (3a)

VAA = V0αATArASTAβA (3b)

VBB = V0αBTBrBSTBβB (3c)

whereV0 is the voltage of the incident pulse, andTA (TB) the transmission rate through the
buffer rod A (B).αA(αB) is the efficiency of the transducer A (B) in converting the electric
voltage to the sound pressure, andβA(βB) is the efficiency in the inverse process.rAS(rBS) is
the reflectivity of the sound pressure at the interface between the buffer rod A (B) and the Hg
sample, andtAS(tSB) is the transmissivity. The definition ofrAS(rBS) andtAS(tSB) is illustrated
in figure 2. These quantities can be calculated from

tIJ = 2zJ
zI + zJ

(4a)

and

rIJ = zJ − zI
zI + zJ

(4b)

wherezI is the acoustic impedance of the mediumI and is expressed by the densityρI and
the sound velocityvI as

zI = ρIvI . (5)
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Making use of equations (3a), (3b) and (3c), one can deduce the following formula for
the transmission rateTS through the sample:

TS = VAB√
VAAVBB

√|rAS ||rBS |
|tAS ||tSB |

√
αBβA

αAβB
. (6)

In the present paper we assume that the last term of equation (6), (i.e.
√
αBβA/αAβB) is unity.

In principle the validity of this assumption is based upon the reciprocity of the conversion
processes between the voltage and the sound pressure. In practice, however, it relies also upon
the efficiency in bonding the transducer. Hence we bonded the transducers onto the sapphire
surfaces as tightly as possible so that the reflected signalsVAA andVBB could be optimized.
We have measured the sound attenuation with four different sample thickness and compared
the results ofα deduced through the procedure mentioned above. We have confirmed that
there are good agreements among the experiments (see section 3).

By using equation (2), the relative error of the attenuation coefficient,|1α/α|, is expressed
as follows, ∣∣∣∣1αα

∣∣∣∣ 6 ∣∣∣∣ 1TS

TS ln TS

∣∣∣∣ +

∣∣∣∣1lSlS
∣∣∣∣ . (7)

Here1TS is the error of the transmission rate and1lS is the error of the sample thickness.
From the scattering of data points,1TS has been estimated to be±0.04 whenTS is about 0.7,
and less than±0.02 whenTS is about 0.05. It is evident from the inequality (7) that the error
limit of α becomes large not only whenTS approaches null but also when it approaches unity,
indicating that only intermediate values ofTS are considered to be reliable. For the sample
thickness of 1 mm or more, for which|1lS/l| is less than 0.03, we have accepted the data
when theTS value lies between 0.05 and 0.7. For the sample thickness of 0.3 mm, for which
|1lS/l| is less than 0.08, we have adopted theTS data between 0.06 and 0.6. Consequently
the upper limit of the relative error ofα is evaluated to be 20% throughout the present work.

3. Results and analysis

3.1. Sound velocity

The measurements of the sound velocityv and the attenuation coefficientα at 20 MHz were
carried out for fluid Hg at nearly constant pressures. Figure 3 shows the results ofv along
several experimental paths for the Hg sample with 1 mm thickness as a function of temperature.
In the figure, the number given to each symbol is the pressure at which the experimental path
crosses the liquid–gas transition when the pressure is smaller thanPc (= 167 MPa), and it is
the pressure at which the experimental path crosses the critical isochore line whenP > Pc.
Typical experimental uncertainties are indicated by the error bars. In the liquid statev decreases
rapidly with increasing temperature, while it increases slowly with temperature in the gaseous
state. Small undulations ofv seen in the gaseous states are spurious, because the amplitude of
such undulations are smaller than the typical error bars. At the liquid–gas transitionv drops
discontinuously to a small value. At 120 MPa, for example, the jump is seen near 1360◦C. We
have observed no additional drop ofv above the boiling point in contrast to the observation by
Kozhevnikovet al [17, 23] who assigned the secondary drop to the prewetting transition at the
interface between the molybdenum (or niobium) buffer rod and mercury sample [27]. Although
the prewetting transition at the interface between mercury and sapphire is well established by
several optical measurements [28, 29], it should be very difficult to detect the wetting transition
by measuring the sound velocity, because the wetting layer is by far thinner than the sample
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thickness. Except for the vicinity of the saturated vapour pressure curve, the present results of
v are in good agreement with those by Kozhevnikovet al [17, 23].

The density dependence of the sound velocityv is shown in figure 4. The density has
been determined by collecting the most accurate data on the isochore lines [8, 26, 30, 31]. The
crosses denote the results ofv measured by Okadaet al [19] in a pressure range between 100
and 200 MPa for the sample length of 7 mm. At high densities the density is the most relevant
parameter for determining the sound velocity and the pressure (or temperature) dependence
of v at constant densities is small. As the density is decreased, the sound velocity decreases
rapidly and near 9 g cm−3, where the M–NM transition occurs, it becomes about one third
of the value at the melting point. As first discovered by Suzukiet al [16] and confirmed
by subsequent works [17–19], the density variation ofv exhibits a clear inflection near the
M–NM transition density. On the nonmetallic sidev varies slowly with density and it exhibits
appreciable pressure (or temperature) dependence. Representative numerical values ofv are
listed in table 1. The present results ofv are in good agreement with the original results by
Suzukiet al [16] at densities above 10 g cm−3, and with the data by Dladlaet al [32] below
8 g cm−3 within the experimental uncertainties.

Table 1. Sound velocity,v, and sound attenuation coefficient,α, of Hg.

Density Temperature Pressurev α

[g cm−3] [◦C] [MPa] [m s−1] [cm−1]

5.0 1500 175.2 363± 11 18.4± 2.0
5.0 1513 180.5 367± 11 12.4± 1.3
5.0 1540 191.0 372± 11 8.17± 1.0
5.0 1555 196.5 378± 11 7.83± 0.9

6.0 1497 176.8 372± 11 79.2± 13.1
6.0 1506 181.2 376± 11 62.0± 9.9
6.0 1529 192.5 382± 11 25.7± 3.4
6.0 1540 198.3 389± 12 21.7± 2.5

7.0 1493 177.3 386± 12 46.5± 7.2
7.0 1501 182.3 392± 12 28.3± 4.7
7.0 1519 193.4 401± 12 18.3± 2.0
7.0 1530 199.8 414± 12 15.0± 1.6

8.0 1479 176.7 431± 13 15.6± 1.6
8.0 1488 183.5 436± 13 15.4± 1.6
8.0 1502 194.0 439± 13 14.2± 1.5
8.0 1512 201.0 443± 13 13.4± 1.4

9.0 1438 175.7 477± 14 12.0± 1.5
9.0 1448 184.0 479± 14 11.7± 1.4
9.0 1461 195.8 485± 15 11.6± 1.4
9.0 1470 203.7 488± 15 11.5± 1.4

10.0 1331 175.6 633± 19 5.80± 0.6
10.0 1343 187.8 636± 19 5.79± 0.6
10.0 1351 199.6 639± 19 5.65± 0.6
10.0 1362 205.6 641± 19 5.36± 0.6

11.0 1060 127.4 853± 26 2.53± 0.4
11.0 1087 164.7 874± 26 2.27± 0.4
11.0 1101 174.5 876± 26 2.26± 0.4
11.0 1117 201.8 881± 26 2.03± 0.4
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Figure 5. The attenuation coefficient,α, of a sound wave along several experimental paths is
shown as a function of temperature. Several different symbols are used depending on the pressure
and the sample lengths. The meaning of these symbols is tabulated in the figure.

3.2. Sound attenuation

The sound attenuation coefficient,α, at 20 MHz along several experimental paths are plotted
in a wide temperature range in figure 5. The meaning of the various symbols is illustrated in a
small table inserted in the figure. The table includes the pressures at which the experimental
path crosses the critical isochore line and the sample lengths (0.3 mm, 1 mm and 2 mm).
Typical experimental uncertainties are indicated by the error bars. The agreement among the
data measured with different sample thickness is fairly good within the error limit of±20%. At
low temperatures,α increases slowly with temperature and it increases rapidly above 1400◦C.
Figure 6 shows the attenuation coefficient,α, around 1500◦C in an expanded scale. At constant
pressuresα has a maximum at the temperature on the critical isochore lines. At 177 MPa the
peak is located at 1497◦C and its height is 88.5± 16.7 cm−1. The peak becomes smaller as
the pressure increases. That is, the peak height is 65.2± 10.5 cm−1 at 181 MPa and 1505◦C,
26.6± 3.6 cm−1 at 192 MPa and 1529◦C, and 21.7± 2.5 cm−1 at 198 MPa and 1540◦C.

The results ofα at 177, 181, 192 and 198 MPa are plotted as a function of density in
figures 7(a), (b), (c) and (d), respectively. The data for the sample lengths of 7 mm were taken
by Okadaet al [19]. When the density decreases,α begins to increase around 11 g cm−3,
and reaches a maximum near the critical density. The latter is a clear indication of the critical
attenuation. In addition to the critical attenuation, it should be noticed that ahumpappears
in theα–ρ curves around 9 g cm−3, where the M–NM transition occurs. The changes inα
around 9 g cm−3 can be seen more clearly at pressures much higher thanPc, because the critical
attenuation diminishes with increasing pressure. In figure 7(d) thehumparound 9 g cm−3 is
well resolved from the critical attenuation and becomes a clear secondary maximum.

The shape of the secondary maximum can be approximately fitted to a Gaussian function,
as shown by the long-dashed lines in figure 7(d). The Gaussian function that has a peak value
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Figure 6. The attenuation coefficient,α, of a sound wave around 1500◦C is shown as a function of
temperature. Several different symbols are used depending on the pressure and the sample lengths.
The meaning of these symbols is tabulated in the figure.

of 12.9 cm−1 at the densityρSM of 8.3 g cm−3 with the standard deviationσSM of 1.2 g cm−3

reproduces the experimental points above 8.0 g cm−3 very well. The density variation ofα
at other pressures can be expressed by the same curve, as shown by the long-dashed lines in
figures 7(a), (b), (c). These figures indicate that the shape of the secondary maximum is almost
independent of pressure, that is, independent of temperature, because(

∂α

∂P

)
ρ

=
(
∂α

∂T

)
ρ

(
∂T

∂P

)
ρ

∼= 0. (8)

This is in sharp contrast to the critical attenuation which depends strongly on pressure and
hence on temperature. The short-dashed lines in figure 7 are guides for the eyes to the critical
attenuation. The Gaussian function reproducing the density dependence ofα in the M–NM
transition range is also shown in figure 8 together with the density dependence of the NMR
Knight shift [10] and the optical gap [4].

The numerical values ofα are listed at various densities and temperatures in table 1.

4. Discussion

Except for the vicinity of the critical point, the sound attenuation in simple liquids may be
described as [33]

α

f 2
= 2π2

ρv3

{
(ζ + 4

3η) + κ

(
1

Cv
− 1

Cp

)}
(9)

wheref is the frequency,ζ andη are the bulk and shear viscosities, respectively,κ is the
thermal conductivity andCv andCp are the specific heats at constant volume and pressure,
respectively. We discuss first the sound attenuation of Hg at high densities. In figure 9, the
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Figure 7. The attenuation coefficient,α, at 177 MPa (a), at 181 MPa (b), at 192 MPa (c) and at
198 MPa (d) is shown as a function of density. Four different symbols are used depending on the
sample lengths. The results for the sample length of 7 mm were measured by Okadaet al [19].

Figure 8. The secondary maximum in the density dependence of the attenuation coefficient,α, is
shown by the solid line together with the density dependence of the optical gap [4] denoted by the
long-dashed line and the Knight shift [10] denoted by the short-dashed line.

logarithm ofα/f 2 at 120 MPa is shown as a function of density. The triangles denotes the
results for the sample length of 1 mm, and the crosses denotes the results for 7 mm [19].
The density dependence of these results is well compatible with theα-values denoted by the
open circles, which were measured by Hunteret al [34] at 90 MHz, though one must be
careful because the relative experimental error inα,1α/α, increases at high densities whereα
becomes small. We have estimated the shear viscosity contribution toα/f 2 from experimental
values ofη [35] as shown by the dashed line in figure 9. Compared with the measuredα/f 2,
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Figure 9. Logarithms of the attenuation coefficient divided by the square of frequency,α/f 2, at
120 MPa are plotted against the density. The crosses denotes the results for the sample length of
7 mm measured by Okadaet al [19]. The dashed and solid lines denote the shear viscosity and
thermal conductivity contributions toα/f 2, respectively. The open circles denoteα/f 2 measured
by Hunteret al at 90 MHz [34].

the shear viscosity term is negligibly small. The solid line in figure 9 denotes the thermal
conductivity contribution toα/f 2. We have estimatedκ from the electrical conductivity data
[8] by using the Wiedemann–Franz relation [36]. The specific heatsCv andCp are evaluated
by combining the present sound velocity data with the most reliablePVTdata [8, 26, 30, 31].
Unlike the early estimation ofCv andCp from the sound velocity [8], the present values ofCv
andCp agree with those directly measured by Levin and Schmutzler [37]. Further details on
the specific heats will be described elsewhere [38].

It is noticed in figure 9 that the experimental values ofα/f 2 approximately give the
thermal conductivity term in the high density range, indicating that the thermal conduction
due to the conduction electrons plays the most dominant role in the sound attenuation in the
high density range. This is consistent with an early suggestion, which was mainly based
upon the experimental results of the Hall effect, that liquid Hg exhibits a nearly-free-electron
behaviour at densities larger than 11 g cm−3. On the other hand, at densities smaller than
11 g cm−3, the sound attenuation is too large to be interpreted by the thermal conductivity term
alone. At 10 g cm−3, for example, the experimentalα/f 2 is about seven times larger than the
thermal conductivity term. Hence it is concluded from equation (9) that the increase ofα at
smaller densities should be associated with an increase in the bulk viscosity.

In general the bulk viscosity becomes important when the volume change occurs out of
phase with the applied sound pressure. Thus the bulk viscosity is proportional to the imaginary
part of the inverse of the frequency dependent adiabatic compressibility,β(ω) [39],

ζ = Im(1/β(ω))

ω
(10)
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whereω is the angular frequency(= 2πf ). Assuming a simple Debye relaxation model for
β(ω) [39]:

β(ω) = β∞ +
β0 − β∞
1 + iωτ

(11)

one can introduce the relaxation timeτ , which is a measure of the delay time for the volume
change after the sound pressure. Hereβ0 is the static adiabatic compressibility(β0 = 1/ρv2)

and β∞ is the adiabatic compressibility at frequencies beyond the radio frequency range.
putting equation (11) into equation (10) we obtain the following expression of the bulk
viscosity:

ζ = (β0 − β∞)τ
β2

0 + ω2τ 2β2∞
. (12)

Since the present acoustic measurements are made in the radio frequency range, we may
assume

ωτ 6 1. (13)

Then equation (12) can be simplified as (see equation (21) of [39])

ζ ∼= β0 − β∞
β2

0

τ. (14)

Furthermore, sinceβ∞ > 0, it follows that

τ > β0ζ. (15)

Figure 10(a) illustrates a range ofτ that satisfies the inequality (15) denoted by the solid
line and the inequality (13) denoted by the dashed line. Here we have assumed that the bulk
viscosity contribution toα can be expressed by the Gaussian function mentioned in section 3.
It is evident from the figure thatτ is considerably longer than a typical time scale (picosecond)
[40] of the individual atomic motion in the liquid state. This may imply that the M–NM
transition gives rise to slow dynamics.

Various mechanisms have been proposed to explain anomalous increase in the bulk
viscosity and most of them are concerned with the relaxation in some kind of two-state system
[39]. In molecular liquids, which have internal degrees of freedom, the internal effects such as
the rotational isomeric are the major causes of the bulk viscosity [39]. Even in the monatomic
liquids having no internal degree of freedom bulk viscosity is expected to arise if local structural
rearrangements are induced with a finite relaxation time by the application of sound pressure
[39].

If one considers a liquid as a mixture of two structural states with different molar volumes
(V1 andV2) and different free energies, its bulk viscosityζ may be written for frequencies well
below the structural relaxation frequencies (i.e. 2πf τ � 1) [39],

ζ = V x1x2τ

RTβ2
0

(
1V

V

)2

(16)

wherex1 andx2 (= 1− x1) are the mole fraction of the states 1 and 2, respectively. The total
molar volumeV is expressed asx1V1 + x2V2, and the volume difference1V is V1 − V2. To
derive equation (16) we have used equation (14). If we fix the variables other thanx1 andx2, ζ
has the maximum value forx2/x1 =

√
V1/V2. Putting this value and experimentally estimated

values such asζ , β0, V etc for liquid Hg at 8.3 g cm−3, where the Gaussian function has the
maximum, into equation (16), we obtain a relation betweenτ and1V/V , as shown by the
bold line in figure 10(b). The line should be truncated at both ends becauseτ should be shorter
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(a)

(b)

Figure 10. (a) The range of the relaxation time,τ , is shown against the density. It is bounded by
the solid line, corresponding to the inequality (15), and by the dashed line, corresponding to the
inequality (13). (b) The logarithm of the relaxation time,τ , estimated from equation (16) is plotted
against the logarithm of the relative volume change,1V/V . τ may lie within the range shown
by the bold line. The dotted line and the dashed line correspond toτ = 1/2πf and1V/V = 1,
respectively.

than 1/2πf (= 8.0 ns) and1V/V should be smaller than unity. The latter corresponds
to τ > 0.1 ns, which nearly coincides with the maximum value ofβ0ζ in figure 10(a). It
should be noticed, however, that1V/V > 0.1 even for the largest value ofτ . Although the
structural study by Tamura and Hosokawa [20] suggests that the nearest neighbour distance
r1 is elongated near the M–NM transition density, the relative dilatation,1r1/r1, is less than
1%. Hence it seems unphysical that such a large change in1V/V , as shown in figure 10(b),
would be induced by the application of weak sound pressure.



5412 H Kohno and M Yao

An alternative way to interpret the present anomalous sound attenuation may be to
introduce the changes in the electronic degrees of freedom by the sound pressure. Franz
[12] proposed a simple model for the M–NM transition of expanded liquid Hg, in which she
emphasized the importance of fluctuations in the local coordination number. In connection
with this argument she demonstrated a possibility that in a tight-binding picture the removal of
a single atom from a metallic Hg cluster changes the whole cluster into nonmetallic (see figure 1
of [12]). This study encourages us to assume that even a very small volume change induced
by the applied sound pressure could lead to a drastic change in the electronic properties at the
M–NM transition. When a local area or a cluster of Hg atoms is switched from nonmetallic
to metallic by the sound pressure, it may be stabilized due to the metallic cohesion and
remain metallic for a short time even after the sound pressure is removed. The switching
from nonmetallic to metallic andvice versamay be regarded as a two-state system. The
fact that the anomalous sound attenuation in the M–NM transition range depends little on
temperature may also support the idea that the present two-state system is closely related to
the changes in the electronic degrees of freedom. Electronic theory of the sound propagation
in liquids is highly required.

5. Summary

The sound attenuation coefficientα of fluid mercury has been measured at 20 MHz in the
temperature and pressure range up to 1600◦C and 200 MPa with four different sample lengths.
As well as a sharp increase inα due to the critical attenuation, a secondary maximum has
been observed in the density dependence ofα in the M–NM transition range. The height of
the secondary maximum depends very little on temperature in sharp contrast to the critical
attenuation. Assuming Debye-type relaxation for the adiabatic compressibility, we have
estimated the relaxation time and concluded that the M–NM transition gives rise to slow
dynamics in expanded liquid Hg. We are now extending the acoustic measurements for liquid
Hg to various frequencies other than 20 MHz, which may enable us to determine the relaxation
time more precisely and to discuss the attenuation mechanism in more detail.
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